If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-14k+25=0=
a = 1; b = -14; c = +25;
Δ = b2-4ac
Δ = -142-4·1·25
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{6}}{2*1}=\frac{14-4\sqrt{6}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{6}}{2*1}=\frac{14+4\sqrt{6}}{2} $
| 16+4x+26=90 | | -16=-5w+8(w-5) | | 7x-7x=-4-4 | | 3(u+2)-6u=18 | | 6500-x+18/100*6500-x=3500 | | 50=4y-14 | | 1=3v+2(v+2) | | 3x^2-13x-34=0 | | X+0.30x=18.50 | | -8=3x+4(x+5) | | 5(y-3)+4y=21 | | x÷2+(-3)=13 | | 30=x/5-7 | | (x+4)^=-3 | | x÷2+-3=13 | | 2x^+16x-10=0 | | 120y+720=600 | | 15-5x=35 | | 1÷3x+9=21 | | -0.4(d-3.8)=-2 | | (1)(3)x+4=(3)(2)x+3 | | -11=d+5 | | 3/x+2+4/5=6/x+2 | | 75=6x3 | | 1/2x-45=-80 | | 0=1000x$2.10-(1000x($28-P)) | | 3=2n+5 | | 1/2-1/8q=q-1 | | 2x+2x+30+3x-10+2x-10=360 | | 1/3x-4/6=2/8 | | 4(2x+7)=15x+23-7x+5 | | 2x+4(3-2x)=3(2x+2)+4 |